Historia
Durante muchos años existió un espacio vacante en la tabla periódica entre el molibdeno (elemento 42) y el rutenio (elemento 44). Muchos investigadores de la época estaban ansiosos por ser los primeros en descubrir y poner nombre al elemento 43; su localización en la tabla sugería que debía ser más fácil de descubrir que otros elementos aún no hallados. En 1828, se creyó haber encontrado en menas de platino. Se le dio el nombre de polinio, pero finalmente resultó ser iridio impuro. Más tarde, en 1846 de nuevo se afirmó haber descubierto el elemento que nombraron ilmenio, pero se determinó que era niobio impuro. Ese error fue cometido de nuevo en 1847 cuando se aseguró haber descubierto el llamado pelopio.20​ Dimitri Mendeleev predijo que ese elemento 43 debía ser químicamente similar al manganeso, y lo llamó eka - manganeso.​
​
En 1877, el químico ruso Serge Kern informó del descubrimiento del elemento en un mineral de platino. Kern lo bautizó con el nombre de davyo, en honor al destacado químico inglés Sir Humphry Davy, pero se determinó que en realidad se trataba de una mezcla de iridio, rodio y hierro. Otro candidato, el lucio, fue el siguiente en 1896, pero resultó ser itrio. Más tarde, en 1908 el químico japonés Masataka Ogawa encontró una evidencia en una muestra de un mineral llamado torianita que parecía indicar la presencia del elemento 43. Ogawa le puso el nombre de niponio, en honor de Japón (Nippon en japonés). En el año 2004, H. K. Yoshihara revisó una copia del espectro de rayos X de la muestra de torianita en la que Ogawa encontró el niponio grabada en una placa fotográfica preservada por la familia del químico japonés. El espectro fue reinterpretado e indicaba la presencia del elemento 75 (renio), en lugar del elemento 43.​
​
Los químicos alemanes Otto Berg, Walter Noddack e Ida Tacke (estos dos últimos más tarde se casarían) informaron del descubrimiento de los elementos 75 y 43 en 1925, nombrando a este último con el nombre de masurio (en honor a Masuria, en el este de Prusia, actualmente territorio polaco, la región de donde procedía la familia de Noddack). El grupo de químicos bombardeó muestras de columbita con un haz de electrones y dedujeron la presencia del elemento 43 al examinar espectros de difracción de rayos X. La longitud de onda de los rayos X está relacionada con el número atómico a través de una expresión deducida por Henry Moseley en 1913. El equipo afirmó haber detectado una leve señal de rayos X a la longitud de onda correspondiente al elemento 43. Otros investigadores contemporáneos no han sido capaces de reproducir este experimento y, de hecho, fue considerado como un error durante muchos años.​
​
En 1998, John T. Armstrong del Instituto Nacional de Estándares y Tecnología, efectuó simulaciones informáticas de los experimentos de 1925 y obtuvo resultados muy similares a los conseguidos por el equipo de Noddack, y aseguró que estaban respaldados por el trabajo publicado por David Curtis del Laboratorio Nacional Los Álamos sobre la medida de la abundancia natural del tecnecio. Sin embargo, los resultados experimentales de Noddack nunca han sido reproducidos, y nunca fueron capaces de aislar el elemento 43. La idea de que Noddack podría efectivamente haber obtenido muestras tecnecio fue propuesta por el físico belga Pieter van Assche.28​ Assche intentó efectuar un análisis a posteriori de los datos de Noddack para demostrar que el límite de detección del método analítico de Noddack podría haber sido del orden de 1000 veces inferior al valor propuesto en sus trabajos (10-9). Estos valores fueron usados por Armstrong para simular el espectro de rayos X original. Armstrong afirmó haber obtenido resultados muy similares al espectro original sin hacer ninguna referencia a dónde fueron publicados los datos originales. De esta forma, ofreció un apoyo convincente a la idea de que Noddack efectivamente identificó la fisión del masurio, basándose en datos espectrales.​ Sin embargo, Gunter Herrmann, de la Universidad de Maguncia, después de un minucioso estudio demostró que los argumentos de van Assche tuvieron que ser desarrollados ad hoc para adecuarse de manera un tanto forzada a los resultados previamente establecidos.
​
Estructura
Usos
El 99 Tc, con 6 horas de período, se usa en las técnicas escintigráficas en medicina nuclear como trazador por su corto período y su facilidad para fijarse en los tejidos. Además de los usos médicos, los pertecnatos se utilizan como inhibidores de la corrosión en las aleaciones.
Propiedades
Es un metal radioactivo gris plateado. Se le conocen isótopos naturales. El isótopo más estable, Tc-97 tiene una vida media de unos 2,6 millones de años.
Valores de las Propiedades
Químicamente se parece al renio. Se disuelve en H2O2 , y se corroe lentamente en el aire húmedo.
Reacciona con los ácidos oxidantes.
El tecnecio forma óxidos, sulfuros y tecneciatos como el tecneciato de amonio (NH4TcO4). Las aleaciones que contienen tecnecio presentan mayor resistencia ala corrosión por el agua.
​
​